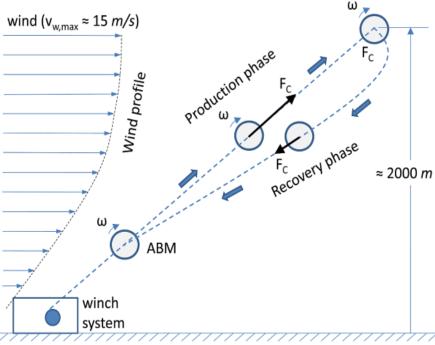


University of Zagreb

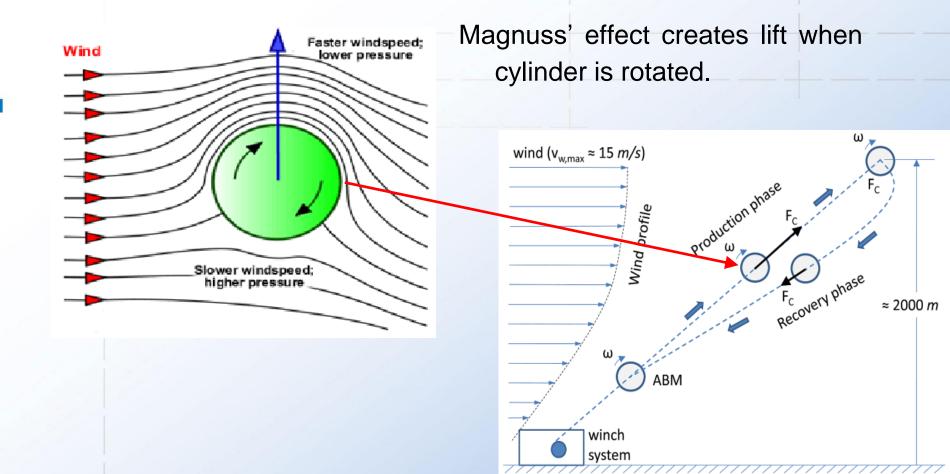
Faculty of Mechanical Engineering and Naval Architecture

High altitude wind energy (HAWE)

University of Zagreb 90 Years of Faculty of Mechanical Engineering and Naval Architecture



Overview of HAWE project (1/2)


A single cycle is divided into two phases:

- Production phase
- Recovery phase

More info: omnidea.net/hawe

Overview of HAWE project (2/2)

More info: omnidea.net/hawe

UNIZAG FSB team involved in HAWE activities

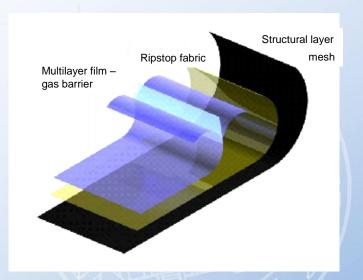
- University of Zagreb (UNIZAG)
- Faculty of mechanical engineering and naval architecture (FSB-Croatian or FMENA-English)
- FMENA's Laboratory for non-metals (Department of Materials)
- FMENA's Automotive Mechatronics Group
 (Department of Robotics and Production System Automation)
- FMENA's Power Engineering CFD Group
 (Department of Energy, Power Engineering and Environment)

UNIZAG FSB – overview of WP's contribution

WP10 Airborne module research	
WP10.3	Materials selection and Aerodynamic studies
WP20 Airborne module control	
WP20.1	Electromechanical system report
WP20.2	Modelling and simulation report
WP50 Ground station drive R&D	
WP50.3	Electric Actuation Design & Functional Optimization
WP60 Ground station control	
WP60.1	Ground station configurations and energy storage systems assessment
WP60.2	Ground station modelling and control

WP10.3 – Materials selection

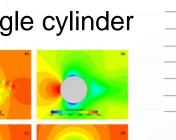
Airborne module - demands: Inner envelope

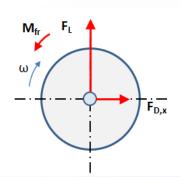

- Gas barrier with good mechanical properties
- Multilayer polymer films
- Seamless and thermally bonded

Outer envelope

- Ripstop fabrics
- Mechanical properties
- UV resistant

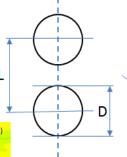
Mesh

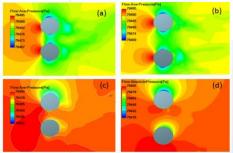

- UV resistant
- Mechanical properties

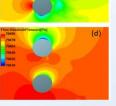


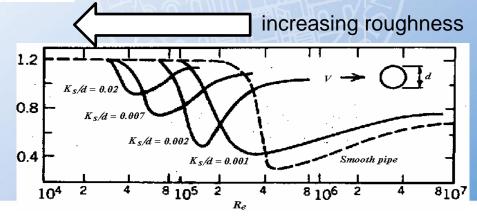
Tested 8 inner and 4 outer envelopes, 3 meshes
Mechanical tests – tensile, impact and dynamic (DMA) tests
Diffusion – time-lag method, tested with light gases – He, H₂, N₂
Weathering – UV and rain cycles

WP10.3 – Aerodynamic studies (1/2)

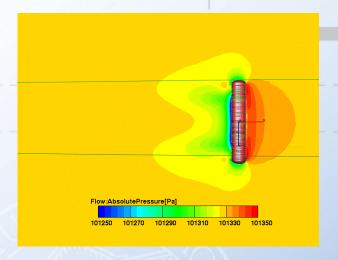

Single cylinder

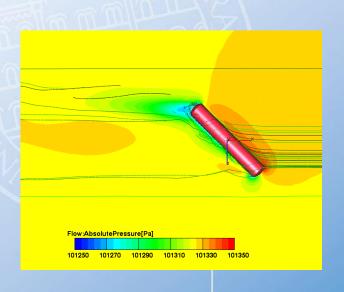

$$C_D, C_L, C_{Mz} = f(\text{Re}, X)$$


Two cylinders

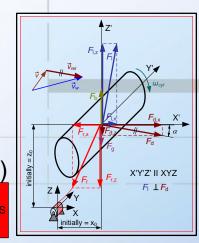

wind

$$C_D, C_L, C_{Mz} = f(\text{Re}, X, L/D, \alpha)$$




Surface roughness (estimation)

WP10.3 – Aerodynamic studies (2/2)

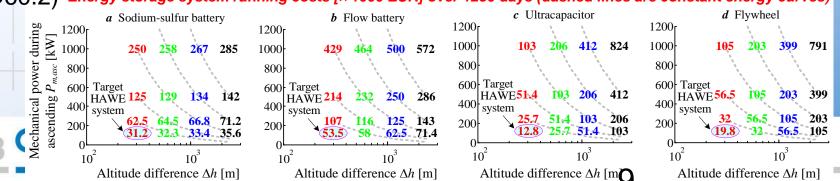


WP20, WP50 & WP60

WP20 – Airborne module control

- Control-oriented ABM dynamics model (D20.1)
- Control variables optimization for max. power production (D20.2)
- Control system design based on optimization results (D20.3)

WP50 – Ground station drive R&D


 Assessment of various (direct, geared) winch drive configurations (D50.3.1)

WP60 – Ground station control

- Design and assessment of various ground station mechatronic configurations with different power transmission and energy storage systems (D60.1)
- Modelling and simulation of proposed mechatronic configurations dynamics
 (D60.2) Energy storage system running costs [x 1000 EUR] over 1250 days (dashed lines are constant energy curves)

End slide

Thank You for Your attention

